In The News

3D Tetrapod Quantum Dots Outperform
TQD can create uncrackable anti-counterfeiting for chips

By: R. Colin Johnson, Advanced Technology Editor, EE Times

Friday, July 11, 2014

PORTLAND, Ore. — Quantum dots are already being used to improve the color accuracy in high-end televisions like Sony's Bravia, and are being experimented with for boosting the output of solar cells. Quantum Materials Corp. in San Marcos, Texas, wants to get into that action -- and more -- with its tetrapod-shaped quantum dots licensed from Rice University.

TQDs give even more accurate control over the color and intensity of the light they emit, in the case of organic light emitting diode (OLED) displays, and absorb -- in the case of solar cells. However, Quantum Materials has found that by adjusting the dimensions of the core and the four arms of the tetrapod, TQDs they can emit a unique signature of light frequencies, making them an uncrackable source of anti-counterfeiting materials for everything from currency to microchips to 3D-printed objects.

"The Tetrapod Quantum Dot offers many advantages for display and solar-cell manufactures, which is why we originally licensed their design from Rice University," David Doderer, vice president of research and development at Quantum Materials, told EE Times.

Doderer continued: But for our 3-D anti-counterfeiting applications we licensed the additive manufacturing quantum dot detection technology developed at the Institute for Critical Technology and Applied Science and the Design, Research, and Education for Additive Manufacturing Systems... a laboratory at Virginia Tech. That will allow us to embed quantum dots within objects being 3-D printed to produce a unique, physically uncloneable signatures known only to the object's manufacturer.

Quantum dots for displays work by absorbing light in a relatively broad band, then emitting light in another narrower band depending to create colors when embedded in OLEDs that cannot be produced by LEDs themselves. TQDs offer many more dimensions of frequency shifting depending on the length, width, overall size, and other dimensions of both their core and their four arms, enabling custom designs for each application.

Since TQD light emission occurs over a range of frequencies and amplitudes, they are able to return a unique signature when pinged. The signature could be completely unique and known only to the manufacturer, used for adding secure serial numbers to manufactured goods, for example.

Quantum Materials licensed a method of embedding the tetrapod quantum dots inside 3D-printed items, but close enough to the surface that they can be pinged and have their signature read-out to identify genuine model numbers or genuine serial numbers. Quantum Materials also envisions novel uses of TQDs for encryption, secure key exchange, and tampering detection.

Quantum Materials, citing Allied Market Research, claims that the market for anti-counterfeit packaging alone is already over $57 billion and will grow at nearly a 14% annual compound rate to $143 billion by 2020. According to Global Industry Analysts, the food and pharmaceutical industries are already on-board to the tune of $82 billion by 2015.

Read Story on
Copyright © 2014 UBM Electronics, A UBM company, All rights reserved.

In The News

December 8, 2016
Quantum Materials Ships Quantum Dot Sample Sets
Display Daily

April 13, 2016
SID Launches Marketing Executives Forum at Display Week 2016
Society for Information Display

March 1, 2016
Quantum Materials Corp To Drive QD Production
Quantum Dots Forum

December, 2015
Vista Partners Has Initiated Coverage on Quantum Materials Corp.

November, 2014
Quantum Materials Scales Up Quantum Dot Production for Solar, Display and Lighting Markets

Friday, April 10, 2015
Quantum Dot Dark Horse
SD Torrey Hills Capital

Tuesday, February 26, 2013
A Forbes interview with Eric Drexler, renown Technologist and Author of "Radical Abundance: How a Revolution in Nanotechnology Will Change Civilization, due out in May.

Thursday, October 30, 2014
Samsung, LG turn to quantum dots as OLED still too pricey

Wednesday, August 20, 2014
Quantum Dot Manufacturing to get Less Expensive

Wednesday, August 20, 2014
Quantum Materials acquires patents from German company
Austin Business Journal

Friday, July 11, 2014
3D Tetrapod Quantum Dots Outperform
EE Times

Monday, June 30, 2014
Quantum Materials Corporation Secures Technology to 3D Print Quantum Dots for Anti-Counterfeiting

Wednesday, June 18, 2014
Nanoengineering boosts carrier multiplication in quantum dots four-fold

Sunday, June 1, 2014
Market Potential of Quantum Dots in the TV Display Industry

Tuesday, May 27, 2014
Quantum Materials plans to hire more workers for San Marcos facility
Austin Business Journal

Tuesday, April 15, 2014
Quantum Materials Now Shipping Size-Optimized Metallic Oxide Particles To Major Asian Electronics Firm
Bio News Texas

Thursday, December 12, 2013
Quantum Materials Corp. Adds Variety to Short List of Display-Oriented Quantum Dot Manufacturers in North America
Display Central

Saturday, November 16, 2013
Plugged In: San Marcos tech company bets big on tiny quantum dots
Austin-American Statesman

Thursday, October 24, 2013
Old technology enables new approaches to sustainability
Nevada Today

Thursday, October 3, 2013
Texas State University, Quantum Materials Enter Unique University-Industry Partnership to Spur Tetrapod Quantum Dot Commercialization
Bio News Texas

Wednesday, April 24, 2013
Oklahoma-based tech company relocating headquarters to Austin
Austin-American Statesman